## GaAs PHEMT MMIC DRIVER AMPLIFIER, 18-40 GHz

## Typical Applications

The HMC635LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios \& VSAT
- LO Driver for Mixers
- Military \& Space


## Functional Diagram



## Features

Gain: $18.5 \mathrm{~dB}{ }^{[2]}$
P1dB: +22 dBm [2]
Output IP3: +27 dBm
Saturated Power: +23.5 dBm @ 15\% PAE [2]
Supply Voltage: +5V @ 280 mA
50 Ohm Matched Input/Output
24 Lead Ceramic $4 \times 4 \mathrm{~mm}$ SMT Package: $16 \mathrm{~mm}^{2}$

## General Description

The HMC635LC4 is a GaAs PHEMT MMIC Driver Amplifier die which operates between 18 and 40 GHz . The amplifier provides 18.5 dB of gain, +27 dBm Output IP3, and +22 dBm of output power at 1 dB gain compression, while requiring 280 mA from a +5 V supply. Ideal as a driver amplifier for microwave radio applications, or as an LO driver for mixers operating between 18 and 40 GHz , the HMC635LC4 is capable of providing up to +23.5 dBm of saturated output power at $15 \%$ PAE. The amplifier's I/Os are DC blocked and internally matched to 50 Ohms making it ideal for integration into Multi-Chip-Modules (MCMs).

## Electrical Specifications

$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{Vdd}=\mathrm{Vdd1} 1,2,3,4=+5 \mathrm{~V}$, $I d d=I d d 1+I d d 2+I d d 3+I d d 4=280 \mathrm{~mA}{ }^{[1]}$

| Parameter | Min. | Typ. | Max. | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency Range | 18-36 |  |  | 36-40 |  |  | GHz |
| Gain [2] | 15 | 18.5 |  | 15 | 17.5 |  | dB |
| Gain Variation Over Temperature |  | 0.045 | 0.06 |  | 0.045 | 0.06 | $\mathrm{dB} /{ }^{\circ} \mathrm{C}$ |
| Input Return Loss |  | 13 |  |  | 7 |  | dB |
| Output Return Loss |  | 10 |  |  | 7 |  | dB |
| Output Power for 1 dB Compression (P1dB) ${ }^{[2]}$ | 19 | 22 |  | 16 | 21 |  | dBm |
| Saturated Output Power (Psat) ${ }^{[2]}$ |  | 23.5 |  |  | 21.5 |  | dBm |
| Output Third Order Intercept (IP3) | 22 | 27 |  | 21 | 26 |  | dBm |
| Noise Figure ${ }^{[2]}$ |  | 7 |  |  | 7 |  | dB |
| Total Supply Current (Idd1 + Idd2 + Idd3 + Idd4) |  | 280 |  |  | 280 |  | mA |

[1] Adjust Vgg1 = Vgg2 between -2 to 0 V to achieve $\mathrm{Id}=280 \mathrm{~mA}$ Typical.
[2] Board loss subtracted out for gain, power and noise figure measurements.
v00.1008
RoHS $\sqrt{ }$
EARTH FRIENDLY
v00.1008

GaAs PHEMT MMIC DRIVER
AMPLIFIER, 18-40 GHz

Broadband Gain \& Return Loss ${ }^{[1]}$


Input Return Loss vs. Temperature


P1dB vs. Temperature [1]


Gain vs. Temperature [1]


Output Return Loss vs. Temperature


Psat vs. Temperature [1]

[1] Board loss subtracted out for gain, power and noise figure measurements.

Power Compression @ 30 GHz ${ }^{[1]}$


Output IP3 vs. Temperature


Gain \& Power vs.
Supply Voltage @ 30 GHz ${ }^{[1]}$


Power Compression @ 40 GHz [1]


Noise Figure vs. Temperature ${ }^{[1]}$


Reverse Isolation vs. Temperature

[1] Board loss subtracted out for gain, power and noise figure measurements.
v00.1008

## Absolute Maximum Ratings

| Drain Bias Voltage (Vdd1, 2, 3, 4) | +5.5 V |
| :--- | :--- |
| Gate Bias Voltage (Vgg1,Vgg2) | -3 to 0 V |
| RF Input Power (RFIN)(Vdd $=+5 \mathrm{Vdc})$ | 15 dBm |
| Channel Temperature | $175^{\circ} \mathrm{C}$ |
| Continuous Pdiss $\left(\mathrm{T}=70^{\circ} \mathrm{C}\right)$ <br> (derate $15.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.70^{\circ} \mathrm{C}\right)$ | 1.575 W |
| Thermal Resistance <br> (channel to package base) | $66.4^{\circ} \mathrm{C} / \mathrm{W}$ |
| Storage Temperature | -65 to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature | -55 to $+70^{\circ} \mathrm{C}$ |

## Outline Drawing

Typical Supply Current vs. Vdd

| Vdd (V) | Idd (mA) |
| :---: | :---: |
| 4.5 | 277 |
| 5.0 | 280 |
| 5.5 | 286 |

Note: Amplifier will operate over full voltage ranges shown above

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


## Pin Descriptions

$\left.\begin{array}{|c|c|c|c|}\hline \text { Pin Number } & \text { Function } & \text { Description } \\ \hline \begin{array}{c}1,2,4-8,10, \\ \text { Ground Paddle }\end{array} & \text { GND } & \text { These pins and package bottom must be connected to } \\ \text { RF/DC ground }\end{array}\right]$

## Application Circuit



Vgg1
Vgg1 v00.1008

## GaAs PHEMT MMIC DRIVER <br> AMPLIFIER, 18-40 GHz

## Evaluation PCB



List of Materials for Evaluation $122763{ }^{[1]}$

| Item | Description |
| :--- | :--- |
| J1 - J2 | 2.92 mm PC Mount K-Connector |
| VD1 - VD4, <br> VGG1, VGG2 | DC Pin |
| C1- C6 | 100 pF Capacitor, 0402 Pkg. |
| C7 - C12 | 1000 pF Capacitor, 0603 Pkg. |
| C13-C18 | $4.7 \mu$ F Capacitor, Tantalum, Case A |
| U1 | HMC635LC4 Driver Amplifier |
| PCB [2] | 122761 Evaluation PCB [3] |

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350 or Arlon 25FR
[3] Due to the very high frequency operation of this product a custom LC4 PCB footprint and solder stencil are required for this design. Performance shown in this data sheet was produced using this custom footprint. DO NOT USE Hittite's standard LC4 footprint. Please contact Applications for details.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

